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Part I: Quasiorder lattices of varieties
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Definition
The set of compatible quasiorders of an algebra A is

Quo(A) = {α ≤ A2 | α is reflexive and transitive }.

1 A quasiorder α ⊆ A2 is compatible with A if
(x , y) ∈ α =⇒ (p(x), p(y)) ∈ α

for all unary polinomials p of A.
2 Quo(A) forms an (involution) lattice with α ∧ β = α ∩ β and
α ∨ β = α ∪ β, where α ∪ β is the transitive closure of α ∪ β.

3 The set Con(A) of congruences forms a sublattice of Quo(A).

Goal
Systematic study of the connection between congruence identities,
quasiorder identities and Maltsev conditions satisfied by varieties.
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Why study compatible quasiorders?

1 More general than congruences.
2 Better behaved than tolerances.
3 Some connection with the constraint satisfaction problem:

For a subdirect power R ≤sd An and a closed path
p := k1 → k2 → · · · → km → k1 with ki ∈ {1, . . . , n}

define

αp =
∞⋃

i=1
(ηk1 ◦ ηk2 ◦ · · · ◦ ηkm )i where ηk = ker πk .

We have αp ∈ Quo(R) and αp ∨ ηk1 can be computed from the
following two-projections:

πk1k2(R), πk2k3(R), . . . , πkmk1(R).

“Prague strategy” iff range(p) ⊆ range(q) =⇒ αp ≤ αq.
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Is this study interesting?

Main results:
1 A locally finite variety V is congruence distributive (Con(A) is

distributive for all A ∈ V) if and only if it is quasiorder
distributive (Quo(A) is distributive for all A ∈ V).

2 A locally finite variety is congruence modular if and only if it
is quasiorder modular.

3 The variety of semilattices is not quasiorder meet
semi-distributive (but it is congruence meet semi-distributive).

4 Quo(A) is not in the lattice quasivariety generated by the
congruence lattices Con(B) for B ∈ HSP(A).

5 For a finite algebra A in a congruence meet semi-distributive
variety Quo(A) has no sublattice isomorphic to M3.

6 For a finite algebra A in a congruence join semi-distributive
variety Quo(A) is also join semi-distributive.
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Congruence distributivity

Theorem (B. Jónsson, 1967)
A variety is congruence distributive iff it has Jónsson terms

x ≈ p1(x , x , y) and pn(x , y , y) ≈ y ,
pi (x , y , y) ≈ pi+1(x , y , y) for odd i ,
pi (x , x , y) ≈ pi+1(x , x , y) for even i , and
pi (x , y , x) ≈ x for all i .

Theorem (G. Czédli and A. Lenkehegyi, 1983; I. Chajda, 1991)
There is a Maltsev condition charaterizing quasiorder distributivity.

Corollary (G. Czédli and A. Lenkehegyi, 1983)
If a variety V has a majority term, then it is quasiorder distributive.
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Directed Jónsson terms

Definition
The ternary terms p1, . . . , pn are directed Jónsson terms if

x ≈ p1(x , x , y) and pn(x , y , y) ≈ y ,
pi (x , y , y) ≈ pi+1(x , x , y) for i = 1, . . . , n − 1, and
pi (x , y , x) ≈ x for i = 1, . . . , n.

Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)
A variety is congruence distributive if and only if it has directed
Jónsson terms.

Lemma (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)
If α /WJ β (weak Jónsson absorbs) for α, β ∈ Quo(A) then α = β.
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Theorem (L. Barto, 2012)
Finitely related algebras in congruence distributive varieties have
near unanimity terms.

t(y , x , . . . , x) ≈ t(x , y , x . . . , x) ≈ · · · ≈ t(x , . . . , x , y) ≈ x .

Theorem
A locally finite variety is congruence distributive if and only if it
has directed Jónsson terms.

Proof.
Let F = FV(x , y) be the two-generated free algebra, and put

R = Sg{(x , x , x), (x , y , y), (y , x , y)} ≤ F3.

The algebra (F ; Pol(R)) is finitely related and has Jónsson terms,
so R has a near-unanimity polymorphism t. The terms generating
the tuples t((y , x , y), . . . , (y , x , y), (x , y , y), (x , x , x), . . . , (x , x , x))
are directed Jónsson terms.
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Theorem
If a finite algebra has directed Jónsson terms, then it is quasiorder
distributive.

Proof.
1 We show (α∨ β)∧ γ ≤ (α∧ γ)∨ (β ∧ γ) for α, β, γ ∈ Quo(A)
2 Put γ∗ = γ ∩ γ−1 ∈ Con(A)
3 Choose (a, b) ∈ (α ∨ β) ∧ γ − (α ∧ γ) ∨ (β ∧ γ) such that the

interval [a/γ∗, b/γ∗] is minimal in the poset (A/γ∗; γ/γ∗)
4 We have a chain of α ∪ β links connecteing a and b
5 Use the directed Jónsson terms to move this chain inside the

interval [a, b] = { x | a γ x γ b }.
6 The links inside a/γ∗ are in (α ∧ γ) ∪ (β ∧ γ).
7 The first link leaving a/γ∗ is also in (α ∧ γ) ∪ (β ∧ γ).
8 By minimality the rest is also in (α ∧ γ) ∨ (β ∧ γ).
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Theorem
For a locally finite variety V the following are equivalent:

1 V is congruence distributive,
2 V has [directed] Jónsson terms,
3 V is quasiorder distributive.

Problem
Does the above equivalence hold for all varieties? Does quasiorder
distributivity imply directed Jónsson terms syntactically?

Lemma
For a finite algebra with directed Jónsson terms and α, β
compatible reflexive relations we have α ∩ β = α ∩ β.
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Directed Gumm terms

Definition
The ternary terms p1, . . . , pn, q are directed Gumm terms if

x ≈ p1(x , x , y),
pi (x , y , y) ≈ pi+1(x , x , y) for i = 1, . . . , n − 1,
pi (x , y , x) ≈ x for i = 1, . . . , n,
pn(x , y , y) ≈ q(x , y , y) and q(x , x , y) ≈ y .

Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)
A variety is congruence modular if and only if it has directed
Gumm terms.

Has been known for locally finite varieties (M. Kozik)
Similar trick works to show this (L. Barto: finitely related
algebras in congruence modular varietes have edge term)
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Congruence modularity
Theorem
If a finite algebra has directed Gumm terms then the lattice of its
compatible quasiorders is modular.

To show α ≤ γ =⇒ (α ∨ β) ∧ γ ≤ α ∨ (β ∧ γ) we take again
a counterexample pair (a, b) with minial distance in γ/γ∗.
Significantly harder than the distributive case.

Theorem
For a locally finite variety V the following are equivalent:

1 V is congruence modular,
2 V has [directed] Gumm terms,
3 V is quasiorder modular.

Proposition (I. Chajda, 1991)
In n-permutable varieties compatible quasiorders are congruences.
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Transitive closure and congruence modularity

Theorem (G. Czédli, E. Horváth, S. Radeleczki, 2003)
Let A be an algebra in a congruence modular variety and α, β be
tolerances (compatible reflexive and symmetric relation) of A.
Then α ∩ β = α ∧ β.

Theorem
If A is an algebra in a locally finite congruence modular variety and
α, β are compatible reflexive relation of A, then

α ∩ β = α ∧ β and α ∪ β = α ∨ β.
So taking the transitive closure is a lattice homomorphism from
the set of compatible reflexive relations of A onto Quo(A).

Lemma
If α ∩ β = α ∧ β holds for all reflexive relations of an algebra A,
then A is quasiorder modular.
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Semi-distributivity

Definition
A variety is congruence meet semi-distributive if the
congruence lattices of its algebras satisfy

α ∧ γ = β ∧ γ =⇒ (α ∨ β) ∧ γ = α ∧ γ.

The dual condition is congruence join semi-distributivity.

Proposition
The variety of semilattices is not quasiorder meet semi-distributive.

a b c

α

a b c

β

a b c

γ
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Theorem (D. Hobby and R. McKenzie, TCT Theorem 9.10)
For any locally finite variety V the following are equivalent:

1 typ{V} ∩ {1, 2} = ∅.
2 V satisfies an idempotent linear Maltsev condition that does

not hold in the varieties of vectorspaces over finite fields.
3 V |=CON γ ∧ (α ◦ β) ⊆ αm ∧ βm for some m where α0 = α,
β0 = β, αn+1 = α ∨ (γ ∧ βn) and βn+1 = β ∨ (γ ∧ αn).

4 M3 is not a sublattice of Con(A) for any A ∈ V.
5 V is congruence meet semi-distributive.
6 There are no non-trivial abelian congruences.

The previous example shows that D1 is a sublattice of the
quasiorder lattice of the free semilattice with three generators.
So items (3) and (5) do not hold for quasiorder lattices.
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Theorem
For a finite algebra A in a congruence meet semi-distributive
variety Quo(A) does not have a sublattice isomorphic to M3.

Proof.
1 Choose a minimal sublattice of Quo(A) isomorphic to M3.
2 The botton quasiorder α cannot have a double edge.
3 The top quasiorder β must have a double edge.
4 The top quasiorder β must be a congruence.
5 The algebra must be (α, β)-minimal.
6 The algebra must be (0, β)-minimal.
7 Use classification of minimal algebras.

Theorem
For a finite algebra A in a congruence join semi-distributive variety
Quo(A) is also join semi-distributive.
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Part II: Algorithms for Maltsev algebras
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Constraint satisfaction problem

Definition
For a finite relational structure B we define

CSP(B) = {A | A→ B }.

CSP( s ss�A ) is the class of 3-colorable graphs
CSP( ss) is the class of bipartite graphs

Dichotomy Conjecture (T. Feder, M. Y. Vardi, 1993)
For every finite structure B the membership problem for CSP(B) is
in P or NP-complete.

The dichotomy conjecture is proved for example when B
is an undirected graph (P. Hell, J. Nešeťril),
has at most 3 elements (A. Bulatov)

Open for directed graphs (equivalent with the original conjecture).
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CSP for Maltsev algebras

Definition
Let B be an algebra with a Maltsev term p, and n ∈ N.

index is an element of {1, . . . , n} × B2,
an index (i , a, b) is witnessed in Q ⊆ Bn if there exist
f , g ∈ Q so that f1 = g1, . . . , fi−1 = gi−1 and fi = a, gi = b
a compact representation of a subpower R ≤ Bn is Q ⊆ R
that witnesses the same set of indices as R and |Q| ≤ 2|B|2 ·n.

Lemma
The compact representation of R ≤ Bn generates R as a
subalgebra.

Idea: take f ∈ R and its best approximation g ∈ Sg(Q)
let i be the smallest index where fi 6= gi
take witnesses f ′, g ′ ∈ Q for the index (i , f (i), g(i))
but then p(f ′, g ′, g) is a better approximation of f
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CSP for Maltsev algebras

Lemma
The 2-projections of R ≤ Bn are polynomial time computable from
the compact representation of R.

Idea: generate as usual, but keep track of representative
tuples only

Lemma
For c1, . . . , ck ∈ B the compact representation of the subpower
R′ = { f ∈ R | f1 = c1, . . . , fk = ck } is poly time computable from
that of R.

Idea: we prove it for k = 1 and use induction
take f , g ∈ R′ witnesses for (i , a, b) in R′
then we have witnesses f ′, g ′ ∈ Q for (i , a, b), and
h ∈ Sg(Q) such that h1 = c and hi = a
thus h, p(h, f ′, g ′) ∈ Sg(Q) witness (i , a, b) in R′
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CSP for Maltsev algebras

Theorem (A. Bulatov, V. Dalmau, 2006)
Let B be a finite algebra with a Maltsev term operation. Then
CSP(B) is solvable in polynomial time.

Theorem
Let B be a finite Maltsev algebra. Then the compact
representation of the product, projection and intersection of
subpowers is computable in polynomial time from the compact
representations of the arguments.

Idea: intersection R ∩ S can be computed by taking the product
R× S then applying equality constraints then a projection.

Question: can the compat representation be computed for the join
(generated subalgebra of the union) of two relations?
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Subpower membership problem

Problem
The subpower membership problem for a fixed finite algebra A is
the problem of deciding for a set X ⊆ An and f ∈ An decide
f ∈ Sg(X ).

1 Naive algorithm: EXPTIME
2 There exists A for which SMP(A) is EXPTIME-complete

(Kozik 2008)
3 SMP(A) is in P for groups and rings (Sims 1971; Furst,

Hopcroft, Luks 1980)
4 There exists a 3-element semigroup A for which SMP(A) is

NP-complete (Bulatov 2013)
5 Complete characterization of SMP(A) for commutative and

0-simple semigroups (Bulatov, Mayer, Steindl 2015)
6 Open for Maltsev algebras (Willard 2007)
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Subpower membership for groups

Fix a finite group G and suppose, that R ≤ Gn.
We know, that (1, . . . , 1) ∈ R, so we can search for (i , 1, a)
forks between (1, . . . , 1) and (1, . . . , 1, a,−, . . . ,−).
Let Qi be a representation of all (i , 1,−) forks, and put
Q =

⋃n
i=1 Qi .

Q is small and R = Q1Q2 · · ·Qn (unique representation)
Problem: find this compact representation for R from a
generating set X ⊆ Gn

We can incrementally do this, and stop when
Qi Qj ⊆ Q1 · · ·Qn, because then we are guaranteed that
Q1 · · ·Qn is then a subgroup.
Open: how to check if Q1 · · ·Qn is closed under another
operation than the product?
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Computation with congruences

Definition
Let α, β be congruences of an algebra R. A transversal of α
modulo β is a set T ⊆ α of cardinality at most |(α ∨ β)/β| such
that α ∨ β = T ∪ β.

Lemma
Let A be a Maltsev algebra, R ≤ An be a subpower and η1, . . . , ηn
be the projection kernels in Con(A). If Ti is a traversal of
η1 ∧ . . . ∧ ηi−1 modulo ηi , then

⋃n
i=1 Ti generates R.

Lemma
Let α, β be congruences of an algebra A with a modular
congruence lattice. If T is a transversal of α modulo β, then
α = (α ∧ β) ∨ CgA(T ).
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Computation with congruences

Lemma
Let α, β, γ be congruences of an algebra R with a modular
congruence lattice. Then a transversal of α modulo β ∧ γ can be
computed from transversals of α modulo β, α ∧ β modulo γ and
A/(β ∧ γ).

Lemma
Let α, β, γ be congruences of an algebra R with a modular
congruence lattice. Then a transversal of α ∧ β modulo γ can be
computed from a transversal of α modulo β ∧ γ.

Corollary
If we have a compact representation of R ≤ An for an algebra in a
congruence modular variety, then we can permute the coordinates
of R and compute the compact representation of the new relation.
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The unknown case

We can assume, that we have the traversals (compact
representations) for all indices except for the last one.
We can assume, that ηn is meet irreducible (otherwise break it
up into more coordinates) and that η1 ∧ . . . ∧ ηn−1 ≤ η∗n.
We can assume that η∗n = η1 by rearranging and combining
coordinates.
We can assume, that η2, . . . , ηn−1 are also meet irreducible,
and η1 ∧ . . . ∧ ηi−1 ∧ ηi+1 ∧ . . . ∧ ηn−1 = η∗i .
We can assume, that the transversals (one fork) of
η1 ∧ . . . ∧ ηi−1 ∧ ηi+1 ∧ . . . ∧ ηn−1 modulo ηi are also a
transversals modulo ηn, so their n-th coordinates are different.
Can we decide whether η1 ∧ . . . ∧ ηn = 0 or find a fork?
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Thank You!
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