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Part I: Quasiorder lattices of varieties



Quasiorders

Definition

The set of compatible quasiorders of an algebra A is

Quo(A) = { a < A? | a is reflexive and transitive }.

@ A quasiorder o C A? is compatible with A if
(x,y) € @ = (p(x),p(y)) €

for all unary polinomials p of A.

@ Quo(A) forms an (involution) lattice with « A 8 = a N [ and
aV B =aUf, where o U S is the transitive closure of o U 5.

© The set Con(A) of congruences forms a sublattice of Quo(A).

Systematic study of the connection between congruence identities,
quasiorder identities and Maltsev conditions satisfied by varieties.




Quasiorders

Why study compatible quasiorders?

© More general than congruences.
@ Better behaved than tolerances.
© Some connection with the constraint satisfaction problem:
For a subdirect power R <;q4 A" and a closed path
p:=ki—k — - — km— ki with ke€{l,...,n}
define
o0 .
ap = U(nkl OMky © -+ 0Mg,) where ny = kermy.
i=1
We have a,, € Quo(R) and a, V 174, can be computed from the
following two-projections:

Thko(R)s Thoks(R)s -+ s Tk (R)-

“Prague strategy” iff range(p) C range(q) = ap < ag.



Quasiorders

Is this study interesting?

Main results:

@ A locally finite variety V is congruence distributive (Con(A) is
distributive for all A € V) if and only if it is quasiorder
distributive (Quo(A) is distributive for all A € V).

@ A locally finite variety is congruence modular if and only if it
is quasiorder modular.

© The variety of semilattices is not quasiorder meet
semi-distributive (but it is congruence meet semi-distributive).

© Quo(A) is not in the lattice quasivariety generated by the
congruence lattices Con(B) for B € HSP(A).

© For a finite algebra A in a congruence meet semi-distributive
variety Quo(A) has no sublattice isomorphic to Ms.

@ For a finite algebra A in a congruence join semi-distributive
variety Quo(A) is also join semi-distributive.



Distributivity

Congruence distributivity

Theorem (B. Jénsson, 1967)

A variety is congruence distributive iff it has Jonsson terms

X =~ P1(X,X,y) and Pn(X7y7Y) =Yy,
pi(x,y,y) = pit+1(x,y,y) for odd i,
pi(x,x,y) =~ pi+1(x, x,y) for even i, and
pi(X7y7 )

~ x for all i.

Theorem (G. Czédli and A. Lenkehegyi, 1983; |. Chajda, 1991)

There is a Maltsev condition charaterizing quasiorder distributivity.

Corollary (G. Czédli and A. Lenkehegyi, 1983)

If a variety V has a majority term, then it is quasiorder distributive.




Distributivity

Directed Jonsson terms

The ternary terms py, ..., p, are directed Jonsson terms if

Npl(X7X7.y) and pn(Xayay)%ya
pi(x,y,y) = pixi1(x,x,y) fori=1,...,n—1, and
pi(x,y,x)~x fori=1,... n.

Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)

A variety is congruence distributive if and only if it has directed
Jénsson terms.

Lemma (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)

If o<y B (weak Jénsson absorbs) for a, B € Quo(A) then o = 3.




Distributivity

Theorem (L. Barto, 2012)

Finitely related algebras in congruence distributive varieties have
near unanimity terms.

ty, X, .., x) (X, y,x . x) R R (X, X, Y) RX.

Theorem
A locally finite variety is congruence distributive if and only if it
has directed Jénsson terms.

Proof.
Let F = Fy(x, y) be the two-generated free algebra, and put

R = Sg{(x,x,x), (x,7,¥): (v, x, )} < F°.
The algebra (F; Pol(R)) is finitely related and has Jénsson terms,

so R has a near-unanimity polymorphism t. The terms generating

the tuples t((y, x,y), ..., (¥, x,¥), (%, ¥, ¥), (X, x, %), ..., (x, %, x))
are directed Jénsson terms. O




Distributivity

If a finite algebra has directed Jonsson terms, then it is quasiorder
distributive.

@ We show (V) Ay < (aAy)V(BAy)fora, s,y € Quo(A)

@ Put v* =ynN~y~! e Con(A)

@ Choose (a,b) € (aV B) Ay —(aAv)V (B A7) such that the
interval [a/~*, b/~v*] is minimal in the poset (A/v*;v/~*)

@ We have a chain of U 3 links connecteing a and b

© Use the directed Jénsson terms to move this chain inside the
interval [a,b] = {x|ayxvyb}.

@ The links inside a/v* are in (a Ay) U (B A 7).

@ The first link leaving a/~* is also in (a A~y) U (B A 7).

@ By minimality the rest is also in (a Ay) V (B A 7). O




Distributivity

Theorem

For a locally finite variety V the following are equivalent:
© V is congruence distributive,
@ V has [directed] Jonsson terms,

© V is quasiorder distributive.

Problem

| A

Does the above equivalence hold for all varieties? Does quasiorder
distributivity imply directed Jénsson terms syntactically?

Lemma

For a finite algebra with directed Jénsson terms and «, 3
compatible reflexive relations we have @ N B = a N B.




Modularity

Directed Gumm terms

The ternary terms p1, ..., pn, g are directed Gumm terms if
x & pi(x, X, y),
pI(X ) .y) Npi+1(X7X;y) for i = 17"'7’7_ 17
pi(x,y,x)~ x fori=1,...,n,
(X, y,y) = q(x,y,y) and q(x,x,y) ~ y

Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)

A variety is congruence modular if and only if it has directed
Gumm terms.

@ Has been known for locally finite varieties (M. Kozik)

e Similar trick works to show this (L. Barto: finitely related
algebras in congruence modular varietes have edge term)



Modularity

Congruence modularity

If a finite algebra has directed Gumm terms then the lattice of its
compatible quasiorders is modular.

@ Toshowa <y = (aVpB) Ay <aV (B A7) we take again
a counterexample pair (a, b) with minial distance in v/v*.
@ Significantly harder than the distributive case.

For a locally finite variety V the following are equivalent:

Q V is congruence modular,
@ V has [directed] Gumm terms,

© V is quasiorder modular.

Proposition (1. Chajda, 1991)

In n-permutable varieties compatible quasiorders are congruences.




Modularity

Transitive closure and congruence modularity

Theorem (G. Czédli, E. Horvath, S. Radeleczki, 2003)

Let A be an algebra in a congruence modular variety and o, 3 be
tolerances (compatible reflexive and symmetric relation) of A.
ThenanNpB=aAp.

Theorem

If A is an algebra in a locally finite congruence modular variety and
a, B are compatible reflexive relation of A, then

anNB=aAB and aUB=aVp.
So taking the transitive closure is a lattice homomorphism from
the set of compatible reflexive relations of A onto Quo(A).

Lemma

If aN B =aA B holds for all reflexive relations of an algebra A,
then A is quasiorder modular.




Semi-distributivity

Semi-distributivity

A variety is congruence meet semi-distributive if the
congruence lattices of its algebras satisfy

aNy=FAy = (aVB)AYy=aA"y.
The dual condition is congruence join semi-distributivity.

The variety of semilattices is not quasiorder meet semi-distributive.

bl A K

N




Semi-distributivity

Theorem (D. Hobby and R. McKenzie, TCT Theorem 9.10)

For any locally finite variety V the following are equivalent:
Q typ{V}Nn{1,2} =0.
@ V satisfies an idempotent linear Maltsev condition that does
not hold in the varieties of vectorspaces over finite fields.

Q@ VEcon YA (o) C amA Bm for some m where ag = a,
Bo =B, ant1=aV (yABn) and Bni1 =BV (v A ay).

© M; is not a sublattice of Con(A) for any A € V.

© V is congruence meet semi-distributive.

© There are no non-trivial abelian congruences.

@ The previous example shows that Dq is a sublattice of the
quasiorder lattice of the free semilattice with three generators.

@ So items (3) and (5) do not hold for quasiorder lattices.



Theorem

For a finite algebra A in a congruence meet semi-distributive
variety Quo(A) does not have a sublattice isomorphic to Ms.

Proof.
@ Choose a minimal sublattice of Quo(A) isomorphic to Ms.

@ The botton quasiorder o cannot have a double edge.
© The top quasiorder 5 must have a double edge.

@ The top quasiorder 5 must be a congruence.

@ The algebra must be («, 5)-minimal.

@ The algebra must be (0, 3)-minimal.

@ Use classification of minimal algebras. O

For a finite algebra A in a congruence join semi-distributive variety
Quo(A) is also join semi-distributive.




Constraint satisfaction

Part |I: Algorithms for Maltsev algebras



Constraint satisfaction
Constraint satisfaction problem

Definition

For a finite relational structure B we define
CSPB)={A|A—>DB}.

o CSP(A) is the class of 3-colorable graphs
@ CSP() is the class of bipartite graphs

Dichotomy Conjecture (T. Feder, M. Y. Vardi, 1993)

For every finite structure B the membership problem for CSP(B) is
in P or NP-complete.

The dichotomy conjecture is proved for example when B
@ is an undirected graph (P. Hell, J. Nesetfil),
@ has at most 3 elements (A. Bulatov)

Open for directed graphs (equivalent with the original conjecture).



Constraint satisfaction

CSP for Maltsev algebras

Let B be an algebra with a Maltsev term p, and n € N.

o index is an element of {1,...,n} x B2,
@ an index (i, a, b) is witnessed in Q C B" if there exist
f,ge Qsothat 4 =g1,...,f,1=g—1andfi=a, g =b
@ a compact representation of a subpower R < B" is Q C R
that witnesses the same set of indices as R and |Q| < 2|BJ?- n.

Lemma

The compact representation of R < B" generates R as a
subalgebra.

@ Idea: take f € R and its best approximation g € Sg(Q)
@ let i be the smallest index where f; # g;

o take witnesses ', g’ € Q for the index (i, f(i), g(i))

e but then p(f',g’, g) is a better approximation of f



Constraint satisfaction

CSP for Maltsev algebras

The 2-projections of R < B" are polynomial time computable from
the compact representation of R.

o Idea: generate as usual, but keep track of representative
tuples only

For c1,...,ck € B the compact representation of the subpower
R={feR|f=c,...,fx =ck} is poly time computable from
that of R.

Idea: we prove it for k = 1 and use induction
take f, g € R’ witnesses for (i, a, b) in R’

then we have witnesses ', g’ € Q for (i, a, b), and
h € Sg(Q) such that hy = cand h; = a

thus h, p(h, f', g’) € Sg(Q) witness (i, a, b) in R’

® 6 6 6 ¢



Constraint satisfaction

CSP for Maltsev algebras

Theorem (A. Bulatov, V. Dalmau, 2006)

Let B be a finite algebra with a Maltsev term operation. Then
CSP(B) is solvable in polynomial time.

| A

Theorem

Let B be a finite Maltsev algebra. Then the compact
representation of the product, projection and intersection of
subpowers is computable in polynomial time from the compact
representations of the arguments.

Idea: intersection R NS can be computed by taking the product
R x S then applying equality constraints then a projection.

Question: can the compat representation be computed for the join
(generated subalgebra of the union) of two relations?



Subpower membership
Subpower membership problem

The subpower membership problem for a fixed finite algebra A is
the problem of deciding for a set X C A" and f € A" decide
f € Sg(X).

© Naive algorithm: EXPTIME

@ There exists A for which SMP(A) is EXPTIME-complete
(Kozik 2008)

© SMP(A) is in P for groups and rings (Sims 1971; Furst,
Hopcroft, Luks 1980)

Q There exists a 3-element semigroup A for which SMP(A) is
NP-complete (Bulatov 2013)

@ Complete characterization of SMP(A) for commutative and
0-simple semigroups (Bulatov, Mayer, Steindl 2015)

@ Open for Maltsev algebras (Willard 2007)



Subpower membership

Subpower membership for groups

e Fix a finite group G and suppose, that R < G".

e We know, that (1,...,1) € R, so we can search for (i, 1, a)
forks between (1,...,1) and (1,...,1,a,—,...,—).

o Let Q; be a representation of all (i,1,—) forks, and put
Q=UL Q.

e Qissmalland R = Q1Q2- - Q, (unique representation)
@ Problem: find this compact representation for R from a
generating set X C G"

@ We can incrementally do this, and stop when
QiQj € Q1 - - Qn, because then we are guaranteed that
Q1 - -+ Q, is then a subgroup.

@ Open: how to check if Q1 --- @, is closed under another
operation than the product?



Subpower membership

Computation with congruences

Definition

Let «, B be congruences of an algebra R. A transversal of «
modulo 5 is a set T C « of cardinality at most |(« Vv 3)/3] such
thataV g =TUDSZL.

Lemma

Let A be a Maltsev algebra, R < A" be a subpower and 11, . ..,1n,
be the projection kernels in Con(A). If T; is a traversal of

m A ... Ani—1 modulo n;, then |Ji_; T; generates R.

Lemma

| A

Let o, B be congruences of an algebra A with a modular
congruence lattice. If T is a transversal of &« modulo (3, then
a=(anpB)V Cga(T).




Subpower membership

Computation with congruences

Lemma

Let o, 3,7 be congruences of an algebra R with a modular
congruence lattice. Then a transversal of & modulo 3 A~y can be
computed from transversals of « modulo 3, a A\ B modulo v and

A/(B A).

Lemma

Let «, B, be congruences of an algebra R with a modular
congruence lattice. Then a transversal of a A 8 modulo v can be
computed from a transversal of o modulo 5 A 7.

A

If we have a compact representation of R < A" for an algebra in a
congruence modular variety, then we can permute the coordinates
of R and compute the compact representation of the new relation.




Subpower membership

The unknown case

@ We can assume, that we have the traversals (compact
representations) for all indices except for the last one.

e We can assume, that 7, is meet irreducible (otherwise break it
up into more coordinates) and that 1 A ... Anp—1 < 1.

@ We can assume that 7 = 11 by rearranging and combining
coordinates.

@ We can assume, that 7,...,m,-1 are also meet irreducible,
and m A .. AD—1T AN+ Ao A -1 :nl*

@ We can assume, that the transversals (one fork) of
MA ... ANi—1 ANi+1 A ... Anp—1 modulo n; are also a
transversals modulo 7, so their n-th coordinates are different.

@ Can we decide whether n; A ... An, =0 or find a fork?



Thank Youl
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