

Quasiorder lattices and Maltsev algebras

Gergő Gyenizse and Miklós Maróti

University of Szeged

Astana-Almaty, 2015. September 8-13.

Quasiorders Distributivity Modularity Semi-distributivity Constraint satisfaction Subpower membership

Part I: Quasiorder lattices of varieties

QuasiordersDistributivityModularitySemi-distributivityConstraint satisfactionSubpower membershipDefinitionThe set of compatible quasiorders of an algebra A is $Quo(A) = \{ \alpha \leq A^2 \mid \alpha \text{ is reflexive and transitive } \}.$

 $\begin{tabular}{ll} \bullet A \end{tabular} \begin{tabular}{ll} \bullet A \end{$

$$(x,y) \in \alpha \implies (p(x),p(y)) \in \alpha$$

for all unary polinomials p of **A**.

- ② Quo(A) forms an (involution) lattice with $\alpha \land \beta = \alpha \cap \beta$ and $\alpha \lor \beta = \overline{\alpha \cup \beta}$, where $\overline{\alpha \cup \beta}$ is the transitive closure of $\alpha \cup \beta$.
- **③** The set $Con(\mathbf{A})$ of congruences forms a sublattice of $Quo(\mathbf{A})$.

Goal

Systematic study of the connection between congruence identities, quasiorder identities and Maltsev conditions satisfied by varieties.

Why study compatible quasiorders?

- More general than congruences.
- Ø Better behaved than tolerances.
- Some connection with the constraint satisfaction problem:

For a subdirect power $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}^n$ and a closed path

$$p:=k_1 o k_2 o \cdots o k_m o k_1$$
 with $k_i \in \{1,\ldots,n\}$

define

$$\alpha_p = \bigcup_{i=1}^{\infty} (\eta_{k_1} \circ \eta_{k_2} \circ \cdots \circ \eta_{k_m})^i \quad \text{where} \quad \eta_k = \ker \pi_k.$$

We have $\alpha_p \in \text{Quo}(\mathbf{R})$ and $\alpha_p \vee \eta_{k_1}$ can be computed from the following two-projections:

$$\pi_{k_1k_2}(R), \ \pi_{k_2k_3}(R), \ldots, \pi_{k_mk_1}(R).$$

"Prague strategy" iff range $(p) \subseteq \text{range}(q) \implies \alpha_p \leq \alpha_q$.

Is this study interesting?

Main results:

- A locally finite variety V is congruence distributive (Con(A) is distributive for all A ∈ V) if and only if it is quasiorder distributive (Quo(A) is distributive for all A ∈ V).
- A locally finite variety is congruence modular if and only if it is quasiorder modular.
- The variety of semilattices is not quasiorder meet semi-distributive (but it is congruence meet semi-distributive).
- Quo(A) is not in the lattice quasivariety generated by the congruence lattices Con(B) for $B \in HSP(A)$.
- So For a finite algebra A in a congruence meet semi-distributive variety Quo(A) has no sublattice isomorphic to M_3 .
- For a finite algebra A in a congruence join semi-distributive variety Quo(A) is also join semi-distributive.

Congruence distributivity

Theorem (B. Jónsson, 1967)

A variety is congruence distributive iff it has Jónsson terms

$$x \approx p_1(x, x, y)$$
 and $p_n(x, y, y) \approx y$,
 $p_i(x, y, y) \approx p_{i+1}(x, y, y)$ for odd i ,
 $p_i(x, x, y) \approx p_{i+1}(x, x, y)$ for even i , and
 $p_i(x, y, x) \approx x$ for all i .

Theorem (G. Czédli and A. Lenkehegyi, 1983; I. Chajda, 1991)

There is a Maltsev condition charaterizing quasiorder distributivity.

Corollary (G. Czédli and A. Lenkehegyi, 1983)

If a variety \mathcal{V} has a majority term, then it is quasiorder distributive.

Directed Jónsson terms

Definition

The ternary terms p_1, \ldots, p_n are **directed Jónsson terms** if

$$x \approx p_1(x, x, y)$$
 and $p_n(x, y, y) \approx y$,
 $p_i(x, y, y) \approx p_{i+1}(x, x, y)$ for $i = 1, ..., n-1$, and
 $p_i(x, y, x) \approx x$ for $i = 1, ..., n$.

Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014) A variety is congruence distributive if and only if it has directed Jónsson terms.

Lemma (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014) If $\alpha \triangleleft_{WJ} \beta$ (weak Jónsson absorbs) for $\alpha, \beta \in Quo(A)$ then $\alpha = \beta$.

Theorem (L. Barto, 2012)

Finitely related algebras in congruence distributive varieties have near unanimity terms.

$$t(y, x, \ldots, x) \approx t(x, y, x, \ldots, x) \approx \cdots \approx t(x, \ldots, x, y) \approx x.$$

Theorem

A locally finite variety is congruence distributive if and only if it has directed Jónsson terms.

Proof.

Let $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x, y)$ be the two-generated free algebra, and put $R = \operatorname{Sg}\{(x, x, x), (x, y, y), (y, x, y)\} \leq \mathbf{F}^{3}.$

The algebra (F; Pol(R)) is finitely related and has Jónsson terms, so R has a near-unanimity polymorphism t. The terms generating the tuples $t((y, x, y), \ldots, (y, x, y), (x, y, y), (x, x, x), \ldots, (x, x, x))$ are directed Jónsson terms.

Theorem

If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

Proof.

- We show $(\alpha \lor \beta) \land \gamma \le (\alpha \land \gamma) \lor (\beta \land \gamma)$ for $\alpha, \beta, \gamma \in Quo(A)$
- 2 Put $\gamma^* = \gamma \cap \gamma^{-1} \in \operatorname{Con}(\mathbf{A})$
- Shoose (a, b) ∈ (α ∨ β) ∧ γ − (α ∧ γ) ∨ (β ∧ γ) such that the interval [a/γ*, b/γ*] is minimal in the poset (A/γ*; γ/γ*)
- Use the directed Jónsson terms to move this chain inside the interval [a, b] = { x | a γ x γ b }.
- The links inside a/γ^* are in $(\alpha \land \gamma) \cup (\beta \land \gamma)$.
- The first link leaving a/γ^* is also in $(\alpha \wedge \gamma) \cup (\beta \wedge \gamma)$.
- **3** By minimality the rest is also in $(\alpha \land \gamma) \lor (\beta \land \gamma)$.

Quasiorders	Distributivity	Modularity	Semi-distributivity	Constraint satisfaction	Subpower membership

Theorem

For a locally finite variety $\mathcal V$ the following are equivalent:

- **1** \mathcal{V} is congruence distributive,
- 2 V has [directed] Jónsson terms,
- \bigcirc \mathcal{V} is quasiorder distributive.

Problem

Does the above equivalence hold for all varieties? Does quasiorder distributivity imply directed Jónsson terms syntactically?

Lemma

For a finite algebra with directed Jónsson terms and α, β compatible reflexive relations we have $\overline{\alpha} \cap \overline{\beta} = \overline{\alpha \cap \overline{\beta}}$.

Directed Gumm terms

Definition

The ternary terms p_1, \ldots, p_n, q are **directed Gumm terms** if

$$x \approx p_1(x, x, y),$$

 $p_i(x, y, y) \approx p_{i+1}(x, x, y) \text{ for } i = 1, \dots, n-1,$
 $p_i(x, y, x) \approx x \text{ for } i = 1, \dots, n,$
 $p_n(x, y, y) \approx q(x, y, y) \text{ and } q(x, x, y) \approx y.$

Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)

A variety is congruence modular if and only if it has directed Gumm terms.

- Has been known for locally finite varieties (M. Kozik)
- Similar trick works to show this (L. Barto: finitely related algebras in congruence modular varietes have edge term)

Congruence modularity

Theorem

If a finite algebra has directed Gumm terms then the lattice of its compatible quasiorders is modular.

- To show $\alpha \leq \gamma \implies (\alpha \lor \beta) \land \gamma \leq \alpha \lor (\beta \land \gamma)$ we take again a counterexample pair (a, b) with minial distance in γ/γ^* .
- Significantly harder than the distributive case.

Theorem

For a locally finite variety ${\mathcal V}$ the following are equivalent:

- $\bullet \ \mathcal{V} \ is \ congruence \ modular,$
- **2** \mathcal{V} has [directed] Gumm terms,
- $\mathbf{3} \ \mathcal{V}$ is quasiorder modular.

Proposition (I. Chajda, 1991)

In n-permutable varieties compatible quasiorders are congruences.

Transitive closure and congruence modularity

Theorem (G. Czédli, E. Horváth, S. Radeleczki, 2003)

Let **A** be an algebra in a congruence modular variety and α, β be tolerances (compatible reflexive and symmetric relation) of **A**. Then $\overline{\alpha \cap \beta} = \overline{\alpha} \land \overline{\beta}$.

Theorem

If **A** is an algebra in a locally finite congruence modular variety and α, β are compatible reflexive relation of **A**, then

$$\overline{\alpha \cap \beta} = \overline{\alpha} \wedge \overline{\beta} \quad \text{and} \quad \overline{\alpha \cup \beta} = \overline{\alpha} \vee \overline{\beta}.$$

So taking the transitive closure is a lattice homomorphism from the set of compatible reflexive relations of \mathbf{A} onto $\operatorname{Quo}(\mathbf{A})$.

Lemma

If $\overline{\alpha \cap \beta} = \overline{\alpha} \wedge \overline{\beta}$ holds for all reflexive relations of an algebra **A**, then **A** is quasiorder modular.

Semi-distributivity

Definition

A variety is **congruence meet semi-distributive** if the congruence lattices of its algebras satisfy

$$\alpha \wedge \gamma = \beta \wedge \gamma \implies (\alpha \vee \beta) \wedge \gamma = \alpha \wedge \gamma.$$

The dual condition is congruence join semi-distributivity.

Proposition

The variety of semilattices is not quasiorder meet semi-distributive.

Quasiorders

Theorem (D. Hobby and R. McKenzie, TCT Theorem 9.10)

For any locally finite variety \mathcal{V} the following are equivalent:

- $1 \quad \operatorname{typ}\{\mathcal{V}\} \cap \{\mathbf{1},\mathbf{2}\} = \emptyset.$
- V satisfies an idempotent linear Maltsev condition that does not hold in the varieties of vectorspaces over finite fields.
- $\mathcal{V} \models_{\text{CON}} \gamma \land (\alpha \circ \beta) \subseteq \alpha_m \land \beta_m$ for some m where $\alpha_0 = \alpha$, $\beta_0 = \beta$, $\alpha_{n+1} = \alpha \lor (\gamma \land \beta_n)$ and $\beta_{n+1} = \beta \lor (\gamma \land \alpha_n)$.
- ${\small \textcircled{\ }}{\small \bold{M}}_3 \text{ is not a sublattice of } \mathrm{Con}({\small \textbf{A}}) \text{ for any } {\small \textbf{A}} \in \mathcal{V}.$
- **(9** \mathcal{V} is congruence meet semi-distributive.
- O There are no non-trivial abelian congruences.
 - The previous example shows that D₁ is a sublattice of the quasiorder lattice of the free semilattice with three generators.
 - So items (3) and (5) do not hold for quasiorder lattices.

Theorem

For a finite algebra A in a congruence meet semi-distributive variety Quo(A) does not have a sublattice isomorphic to M_3 .

Proof.

- $\textbf{O} \ \ Choose \ a \ minimal \ sublattice \ of \ Quo(\textbf{A}) \ isomorphic \ to \ \textbf{M}_3.$
- **2** The botton quasiorder α cannot have a double edge.
- **③** The top quasiorder β must have a double edge.
- **(4)** The top quasiorder β must be a congruence.
- The algebra must be (α, β) -minimal.
- The algebra must be $(0, \beta)$ -minimal.
- Use classification of minimal algebras.

Theorem

For a finite algebra A in a congruence join semi-distributive variety Quo(A) is also join semi-distributive.

Quasiorders	Distributivity	Modularity	Semi-distributivity	Constraint satisfaction	Subpower membership

Part II: Algorithms for Maltsev algebras

Constraint satisfaction

Subpower membership

Constraint satisfaction problem

Definition

For a finite relational structure $\ensuremath{\mathbb{B}}$ we define

$$\mathsf{CSP}(\mathbb{B}) = \{ \mathbb{A} \mid \mathbb{A} \to \mathbb{B} \}.$$

- CSP(\bigtriangleup) is the class of 3-colorable graphs
- $\mathsf{CSP}(\)$ is the class of bipartite graphs

Dichotomy Conjecture (T. Feder, M. Y. Vardi, 1993)

For every finite structure $\mathbb B$ the membership problem for $\mathsf{CSP}(\mathbb B)$ is in P or NP-complete.

The dichotomy conjecture is proved for example when ${\mathbb B}$

- is an undirected graph (P. Hell, J. Nešetřil),
- has at most 3 elements (A. Bulatov)

Open for directed graphs (equivalent with the original conjecture).

Constraint satisfaction

CSP for Maltsev algebras

Definition

Let **B** be an algebra with a Maltsev term p, and $n \in \mathbb{N}$.

- index is an element of $\{1,\ldots,n\} imes B^2$,
- an index (i, a, b) is **witnessed** in $Q \subseteq B^n$ if there exist $f, g \in Q$ so that $f_1 = g_1, \ldots, f_{i-1} = g_{i-1}$ and $f_i = a, g_i = b$
- a compact representation of a subpower R ≤ Bⁿ is Q ⊆ R that witnesses the same set of indices as R and |Q| ≤ 2|B|² · n.

Lemma

The compact representation of $\mathbf{R} \leq \mathbf{B}^n$ generates \mathbf{R} as a subalgebra.

- Idea: take $f \in \mathbf{R}$ and its best approximation $g \in \operatorname{Sg}(Q)$
- let *i* be the smallest index where $f_i \neq g_i$
- take witnesses $f', g' \in Q$ for the index (i, f(i), g(i))
- but then p(f', g', g) is a better approximation of f

CSP for Maltsev algebras

Lemma

The 2-projections of $\mathbf{R} \leq \mathbf{B}^n$ are polynomial time computable from the compact representation of \mathbf{R} .

• Idea: generate as usual, but keep track of representative tuples only

Lemma

For $c_1, \ldots, c_k \in B$ the compact representation of the subpower $\mathbf{R}' = \{ f \in \mathbf{R} \mid f_1 = c_1, \ldots, f_k = c_k \}$ is poly time computable from that of \mathbf{R} .

- Idea: we prove it for k = 1 and use induction
- take $f,g \in \mathbf{R}'$ witnesses for (i,a,b) in \mathbf{R}'
- then we have witnesses $f',g'\in Q$ for (i,a,b), and
- $h \in \operatorname{Sg}(Q)$ such that $h_1 = c$ and $h_i = a$
- thus $h, p(h, f', g') \in \operatorname{Sg}(Q)$ witness (i, a, b) in \mathbf{R}'

Constraint satisfaction

Subpower membership

CSP for Maltsev algebras

Theorem (A. Bulatov, V. Dalmau, 2006)

Let **B** be a finite algebra with a Maltsev term operation. Then CSP(B) is solvable in polynomial time.

Theorem

Let **B** be a finite Maltsev algebra. Then the compact representation of the product, projection and intersection of subpowers is computable in polynomial time from the compact representations of the arguments.

Idea: intersection $\mathbb{R} \cap \mathbb{S}$ can be computed by taking the product $\mathbb{R} \times \mathbb{S}$ then applying equality constraints then a projection.

Question: can the compat representation be computed for the join (generated subalgebra of the union) of two relations?

Constraint satisfaction

Subpower membership

Subpower membership problem

Problem

The subpower membership problem for a fixed finite algebra **A** is the problem of deciding for a set $X \subseteq A^n$ and $f \in A^n$ decide $f \in \text{Sg}(X)$.

- Naive algorithm: EXPTIME
- There exists A for which SMP(A) is EXPTIME-complete (Kozik 2008)
- SMP(A) is in P for groups and rings (Sims 1971; Furst, Hopcroft, Luks 1980)
- There exists a 3-element semigroup A for which SMP(A) is NP-complete (Bulatov 2013)
- Complete characterization of SMP(A) for commutative and 0-simple semigroups (Bulatov, Mayer, Steindl 2015)
- Open for Maltsev algebras (Willard 2007)

Modularity Subpower membership for groups

Quasiorders

Distributivity

- Fix a finite group **G** and suppose, that $\mathbf{R} \leq \mathbf{G}^n$.
- We know, that $(1, \ldots, 1) \in R$, so we can search for (i, 1, a)forks between (1, ..., 1) and (1, ..., 1, a, -, ..., -).

Semi-distributivity

Constraint satisfaction

Subpower membership

- Let Q_i be a representation of all (i, 1, -) forks, and put $Q = \bigcup_{i=1}^{n} Q_i$.
- Q is small and $R = Q_1 Q_2 \cdots Q_n$ (unique representation)
- Problem: find this compact representation for **R** from a generating set $X \subseteq G^n$
- We can incrementally do this, and stop when $Q_i Q_j \subseteq Q_1 \cdots Q_n$, because then we are guaranteed that $Q_1 \cdots Q_n$ is then a subgroup.
- Open: how to check if $Q_1 \cdots Q_n$ is closed under another operation than the product?

Computation with congruences

Definition

Let α, β be congruences of an algebra **R**. A **transversal of** α **modulo** β is a set $T \subseteq \alpha$ of cardinality at most $|(\alpha \lor \beta)/\beta|$ such that $\alpha \lor \beta = \overline{T \cup \beta}$.

Lemma

Let **A** be a Maltsev algebra, $\mathbf{R} \leq \mathbf{A}^n$ be a subpower and η_1, \ldots, η_n be the projection kernels in Con(**A**). If T_i is a traversal of $\eta_1 \wedge \ldots \wedge \eta_{i-1}$ modulo η_i , then $\bigcup_{i=1}^n T_i$ generates **R**.

Lemma

Let α, β be congruences of an algebra **A** with a modular congruence lattice. If *T* is a transversal of α modulo β , then $\alpha = (\alpha \land \beta) \lor \operatorname{Cg}_{\mathsf{A}}(T)$.

Computation with congruences

Lemma

Let α, β, γ be congruences of an algebra **R** with a modular congruence lattice. Then a transversal of α modulo $\beta \wedge \gamma$ can be computed from transversals of α modulo β , $\alpha \wedge \beta$ modulo γ and $A/(\beta \wedge \gamma)$.

Lemma

Let α, β, γ be congruences of an algebra **R** with a modular congruence lattice. Then a transversal of $\alpha \land \beta$ modulo γ can be computed from a transversal of α modulo $\beta \land \gamma$.

Corollary

If we have a compact representation of $\mathbf{R} \leq \mathbf{A}^n$ for an algebra in a congruence modular variety, then we can permute the coordinates of \mathbf{R} and compute the compact representation of the new relation.

- We can assume, that we have the traversals (compact representations) for all indices except for the last one.
- We can assume, that η_n is meet irreducible (otherwise break it up into more coordinates) and that $\eta_1 \wedge \ldots \wedge \eta_{n-1} \leq \eta_n^*$.
- We can assume that $\eta_n^* = \eta_1$ by rearranging and combining coordinates.
- We can assume, that $\eta_2, \ldots, \eta_{n-1}$ are also meet irreducible, and $\eta_1 \wedge \ldots \wedge \eta_{i-1} \wedge \eta_{i+1} \wedge \ldots \wedge \eta_{n-1} = \eta_i^*$.
- We can assume, that the transversals (one fork) of η₁ ∧ ... ∧ η_{i-1} ∧ η_{i+1} ∧ ... ∧ η_{n-1} modulo η_i are also a transversals modulo η_n, so their *n*-th coordinates are different.
- Can we decide whether $\eta_1 \wedge \ldots \wedge \eta_n = 0$ or find a fork?

Quasiorders	Distributivity	Modularity	Semi-distributivity	Constraint satisfaction	Subpower membership

Thank You!